

Band-wise Multi-scale CNN Architecture for Remote Sensing Image Scene Classification

Jian Kang and Begüm Demir
Remote Sensing Image Analysis (RSiM) Group, TU Berlin
jian.kang@tu-berlin.de, demir@tu-berlin.de

Outline

Introduction

- Motivation
- Band-wise multi-scale CNN architecture
- Experiments
- Conclusion

Introduction

Scene classification of Remote Sensing(RS) images

 Characterization of remote sensing images based on single-label or multi-label land-use or land-cover classes

Existing large-scale scene classification datasets: e.g., AID¹ and

BigEarthNet²

Bigt Drthwed: images
Seal in Equation 12 in larges
43 Single length leng

Broad-leaved forest; Complex cultivation patterns; Brachtinuous urban fabric; Non-irrigated arable land; Pastures.

Broad-leaved forest; Complex cultivation patterns; Land Faire and occupied by agriculture; Transitional woodland/shrub

Agro-forestry areas; Broad-leaved forest; Transity

Transityonal woodland/shrub; Water bodies.

^[1] Xia, Gui-Song, et al. "AID: A benchmark data set for performance evaluation of aerial scene classification." *IEEE Transactions on Geoscience and Remote Sensing* 55.7 (2017): 3965-3981.

Introduction

- Scene classification of RS images
 - Deep learning has achieved state-of-the-art classification performance
 - Most of the proposed methods for scene classification are based on the pre-trained convolutional neural network (CNN) architectures on the large-scale computer vision archives (e.g., ImageNet).
 - However, these pre-trained CNN architectures cannot be directly applied on the scene classification with high-dimensional RS images (e.g., multi-spectral images)

• Motivation of this work:

 Characterization of semantic contents for high-dimensional RS images based on a novel CNN architecture

Standard 2D convolutional layer (bias is omitted)

Standard 2D convolutional layer (bias is omitted)

$$\mathbf{u}_m = \sigma(\mathbf{w}_m * \mathbf{x}_i) = \sigma(\sum_{c=1}^C \mathbf{w}_m^c * \mathbf{x}_i^c)$$

- Through such operation, the spectral features may not be optimally extracted, since the process for the spectral feature extraction is entangled within the summation of the spatial convolution results.
- o In addition, the convolution layer with a fixed size filter \mathbf{W}_m may not sufficiently extract the spatial features, especially for different land-use or land-cover objects with different spatial sizes.

- Band-wise multi-scale convolution
 - Sufficiently characterizing the multi-scale spatial features in a band-wise manner

$$\hat{\mathbf{x}}_i^{c_s} = \mathbf{w}^{c_s} * \mathbf{x}_i^c$$

- Pixel-wise convolution
 - Learning the spectral information fusion in a pixel-wise manner

$$u_m(i,j) = \sigma(\sum_{c_s} \hat{w}_m^{c_s} \hat{x}_i^{c_s}(i,j))$$

Standard 2D residual blocks for learning high-level semantic information

Experiments: Dataset Description

BigEarthNet is utilized for evaluating the performance of the proposed CNN architecture in the task of multi-label classification, where 10m and 20m bands are exploited and the training, validation and test images are following [4].

Experimental Design

- Pytorch implementation
- O PyTorch
- The class probabilities are obtained by applying sigmoid activation function
- Binary Cross-Entropy (BCE) loss is utilized
- Adam optimizer with learning rate(LR) of 10⁻³
- LR is decayed by a factor of 0.5 in every 30 epochs
- Leaky ReLU is exploited inside the proposed architecture

ResNet18, ResNet50, and 3D-CNN are regarded as baseline methods

Experimental Design

- Metrics for the evaluation [5]:
 - F1 score, an integrated metric of sample precision and recall
 - Accuracy (Acc), the degree of sample-wise correctness
 - Hamming Loss (HL), evaluates the fraction of misclassified labels
 - Ranking Loss (RL), evaluates the fraction of reversely ordered label pairs

Experimental Results

• Learning curves of all the considered CNN architectures:

Experimental Results

• Classification performances (%) under all the metrics and the numbers of parameters (#) for all the considered methods:

Architectures	F1	Acc	HL	RL	#para
3D-CNN	74.67	64.73	7.74	4.51	1.75M
ResNet18	78.68	69.38	6.74	3.52	11.2M
ResNet50	81.05	72.13	6.18	2.87	23.6M
Proposed BWMS	81.84	73.07	5.97	2.70	11.3M

Conclusion

- A novel CNN architecture for accurately capturing the spectral-spatial information content present in high-dimensional RS images.
- The proposed architecture is composed of:
 - A convolutional layer for extracting band-wise multi-scale spatial features
 - A convolutional layer for extracting pixel-wise spectral features
 - Standard 2D convolutional and residual blocks for learning the high-level semantic features
- The proposed convolutional layers can improve the classification performance by sufficiently extracting spectral-spatial features
- They can be also integrated into other high-dimensional RS image
 classification network, such as hyperspectral images.

Thank you very much for your attention!

