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Introduction

● Remote Sensing (RS) technology development 

meets big Earth Observation (EO) data

● Retrieving interested contexts from big EO data is 

a basic task in RS

Credit: Wikipedia



Introduction

● Characterizing the contexts of RS images with 

low-dimensional features is the key for achieving 

image retrieval

● Deep learning has been a workhorse for learning 

those features



Introduction

● Labeling RS scene datasets for developing advanced deep metric learning algorithms

○ Human experts: AID[1] , NWPU-RESISC45[2]

○ Crowd-sourcing data: SEN12MS[3]

[1] Xia, Gui-Song, et al. "AID: A benchmark data set for performance evaluation of aerial scene classification." IEEE Transactions on Geoscience and Remote Sensing 55.7 (2017): 

3965-3981.

[2] Cheng, Gong, Junwei Han, and Xiaoqiang Lu. "Remote sensing image scene classification: Benchmark and state of the art." Proceedings of the IEEE 105.10 (2017): 1865-1883.

[3] Schmitt, Michael, et al. "SEN12MS--A Curated Dataset of Georeferenced Multi-Spectral Sentinel-1/2 Imagery for Deep Learning and Data Fusion." arXiv preprint arXiv:1906.07789

(2019).
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Introduction

● Labeling based on crowd-sourcing data may contain noise

○ geo-location/registration errors

○ land-cover changes

○ low-quality Volunteered Geographic Information (VGI)

Bare land → Desert Church → Downtown Farmland → Meadow



Motivation and Background Knowledge

● Extracting deep embeddings of RS images in a robust manner

● Noise type:

○ Uniform noise: 

a true label is flipped into other labels with 

equal probability

○ Label-dependent noise: 

a true label is more likely to be mistakenly 

labeled with a particular class



Background Knowledge

● Normalized Softmax Loss (NLS) [5]

● Objectives of NLS:

○ Learning the normalized center embedding for each class

○ Pulling the features of each class to their associated center 

embeddings in latent space

[5] Zhai, Andrew, and Hao-Yu Wu. "Classification is a strong baseline for deep metric learning." arXiv preprint arXiv:1811.12649 (2018).

Credit: [5]



Robust Normalized Softmax Loss (RNSL)

● Gradients of              with respect to         :   

● Hard samples are given more attention than the ones which are easily classified

● When label noise exists,            can lead the trained models overfitting to noisy samples

Classification probability 



Robust Normalized Softmax Loss (RNSL)

● RNSL exploits negative Box-Cox 

transformation with the form [6,7]:

[6] Zhang, Zhilu, and Mert R. Sabuncu. "Generalized cross entropy loss for training deep neural networks with noisy labels." arXiv preprint arXiv:1805.07836 (2018).

[7] Kang, Jian, et al. "Robust Normalized Softmax Loss for Deep Metric Learning-Based Characterization of Remote Sensing Images With Label Noise." IEEE Transactions on 

Geoscience and Remote Sensing (2020).

● With different values of   , the loss changes 

with respect to the classification probability    



Robust Normalized Softmax Loss (RNSL)

● Gradients of            with respect to       :

● Downweighting effects of          , which can reduce the influence of noisy samples on learning 

the parameters



Robust Normalized Softmax Loss (RNSL)

● To further improve the robustness of RNSL when heave noisy labels exist, a truncated version 

of RNSL is introduced:

● The training strategy:

○ Within the first T epochs, the models are trained with RNSL

○ After T epochs, the loss function is switched to the truncated version



Experimental Setup

Dataset AID; NWPU-RESISC45

Noise Type Uniform; Label-dependent

Noise Level 0.1; 0.3; 0.5; 0.7

Data Splitting Train:0.7, Val:0.1, Test:0.2

Tasks KNN classification; Clustering; Image retrieval

Metrics OA; NMI; ACC; MAP



Experimental Setup

● Compared methods:

○ D-CNN [8]

○ Triplet [9]

○ SNCA [10]

○ NSL [5]

○ ArcFace [11]

[8] Cheng, Gong, et al. "When deep learning meets metric learning: Remote sensing image 

scene classification via learning discriminative CNNs." IEEE transactions on geoscience and 

remote sensing 56.5 (2018): 2811-2821.

[9] Schroff, Florian, Dmitry Kalenichenko, and James Philbin. "Facenet: A unified embedding 

for face recognition and clustering." Proceedings of the IEEE conference on computer vision 

and pattern recognition. 2015.

[10] Wu, Zhirong, Alexei A. Efros, and Stella X. Yu. "Improving generalization via scalable 

neighborhood component analysis." Proceedings of the European Conference on Computer 

Vision (ECCV). 2018.

[5] Zhai, Andrew, and Hao-Yu Wu. "Classification is a strong baseline for deep metric 

learning." arXiv preprint arXiv:1811.12649 (2018).

[11] Deng, Jiankang, et al. "Arcface: Additive angular margin loss for deep face recognition." 

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 

2019.



Experimental Results

● KNN classification 



Experimental Results

● Clustering

○ ACC



Experimental Results

● Image Retrieval

○ MAP@20



Experimental Results

● Image Retrieval

○ PR curve



Experimental Results

● Feature visualization (noise level:0.5)

○ t-SNE

AID

NWPU-RESISC45



Conclusion

● A novel robust loss function is proposed for deep embedding of RS images

● Compared to other state-of-the-art methods, RNSL achieves significant performance 

improvement in several tasks when the noisy labels exist



Thank you for your attention!

https://jiankang1991.github.io/


